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1. INTRODUCTION

The motivations for this study are twofold. On the one hand we wanted to study
the effects of the mean ¯ow on the acoustic-wave speed, in the presence of a
coupling with a structural element bounding the ¯uid. On the other hand, since
the energy of a perturbation is partitioned between ¯uid and structure according
to its speed, we were interested in investigating how the Mach number of the
undisturbed ¯ow may affect the noise scattered at inhomogeneities by the
structure.
In classical papers on aeroelastic interactions, the time evolution of small

perturbations is studied [1]. The stability boundaries are determined as functions
of a speed parameter (the ratio of the wave velocity in the panel in the absence
of coupling and the wavelength of the disturbance). It is also found that a panel
characterized elastically by ¯exural forces only is unstable at any ®nite airspeed
for suf®ciently large wavelengths, whereas the introduction of membrane tension
will lead to instability only for airspeeds greater than the minimum wave velocity
of the panel. More recently the same problem was studied from another
viewpoint, the interest being the scattering of a bending wave by an
inhomogeneity in an otherwise homogeneous and in®nite panel immersed in a
¯uid at rest [2]. Given a certain frequency of the perturbation, the dispersion
relation of the coupled system is studied in terms of the wave number, whereas
in the study of stability, a frequency analysis was preferred in order to detect the
eventual time-wise growth of the propagating wave.
The study of the dispersion relation for a homogeneous beam is a preliminary

step in analyzing the behavior of the air±beam system in the presence of
inhomogeneities. In fact, the effect of gaps, stiffeners etc., is accounted for by the
presence, in the right-hand side of the beam equation, of a linear combination of
the Dirac function and its derivatives. The right-hand side of the beam equation
amounts to a forcing on the system whose response is, in the Fourier space, the
ratio between the Fourier transform of the forcing term and the Fourier
transform of the dispersion relation. Therefore, in the physical space, the
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solution is governed by the poles of such ratio, which are in turn the zeros of the
dispersion relation.
In what follows, a simple one-dimensional con®guration was ®rst studied in

which the Mach number plays a role only on the stability bounds, while in the
two-dimensional case the Mach number has an important effect on the solution
of the dispersion relation, allowing or not certain waves to appear. The one-
dimensional case, however, has the merit of showing clearly the in¯uence of the
¯uid±structure coupling on the speed of the propagating waves. One may
anticipate that for low values of the stiffness, the propagation speeds in the beam
and in the ¯uid are remarkably different from those in the uncoupled case.

2. QUASI ONE-DIMENSIONAL COUPLING

The ¯ow of a compressible ¯uid is studied through a nozzle with elastic walls.
The nozzle walls are loaded by the pressure difference between an outside
ambient pressure and the local internal ¯uid pressure. The ¯ow is assumed to be
quasi one-dimensional, inviscid and isentropic. Under these hypotheses the non-
dimensional equations governing the ¯ow are the following

2

gÿ 1
ct � cux � 2

gÿ 1
cxu� c

H
�Ht � uHx� � 0, �1�

ut � uux � 2

gÿ 1
ccx � 0, �2�

where c is the local speed of sound, u is the velocity of the ¯uid, H the nozzle
height and g the speci®c heats ratio.
In addition, it is assumed that the deformation of the walls of the nozzle are

so small that the motion is governed by the linear beam equation

mHtt �DHxxxx � pi ÿ p0, �3�
where D is the bending stiffness, pi the local pressure of the ¯uid, p0 is the
outside ambient pressure and m the linear mass of the walls, which is 1 in what
follows.
The coupling between the quasi one-dimensional ¯uid equation and the beam

equation, which is due to the pressure difference on the right-hand side of
equation (3), is interesting because of the different nature of the partial
differential equations (PDEs) governing the ¯uid and the nozzle wall motion. If
only the ¯uid is considered, one has a hyperbolic system of PDEs representing
signals that propagate on two characteristics with speeds u2 c. The
perturbations are felt in the ¯uid only after a ®nite time, needed for the
perturbation to propagate from the source to the receiver. On the other hand,
the linear beam equation is parabolic, i.e., perturbations are immediately felt all
along the beam, although the phenomena is still evolving in time. In fact, from
the dispersion relation of this PDE one has two waves travelling with speeds
2

����
D
p

k and two near ®elds [3].
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The coupled system is parabolic, but the travelling waves of each uncoupled
system play an important role for what concerns the stability of the solution and
the partition of the energy of the perturbations between the ¯uid and the nozzle
walls.
Let us consider a nozzle with straight walls at t=0 and with an inlet Mach

number M0. We want to study the evolution of small perturbations for this
system. Take c= c0= c 0, u= u0+ u 0 and H=H0+H 0 and substitute into
equations (1), (2) and (3). Assuming that p0=r0=1, that the prime quantities
are small, and dropping the prime notation, one obtains the following system for
the perturbations:

2

gÿ 1
ct � c0ux � 2

gÿ 1
u0cx � c0

H0
�Ht � u0Hx� � 0, �4�

ut � u0ux � 2

gÿ 1
c0cx � 0, �5�

Htt �D Hxxxx ÿ 2

gÿ 1
c0

c20
g

� � 1
gÿ1
c � 0: �6�

This system of PDEs governs the evolution of small disturbances in a nozzle
with parallel elastic walls. Assuming that the solution has the form

c � ĉ ei�kxÿot�, u � û ei�kxÿot�, H � Ĥ ei�kxÿot�, �7--9�
substitute into equations (4)±(6) to get

û � 2

gÿ 1

c0k

oÿ u0k
ĉ, Ĥ � 2

gÿ 1
c0

c20
g

� � 1
gÿ1 ĉ

Dk4 ÿ o2
, �10; 11�

�oÿ u0k�2 1� c20
H0�Dk4 ÿ o2�

c20
g

� � 1
gÿ1

" #
ÿ c20k

2 � 0: �12�

Note that as D!1 or k!1 the system becomes increasingly uncoupled, i.e.,
the evolution of the perturbations in the beam are less and less in¯uenced by the
presence of the ¯uid and vice versa.
For a given wave number k, one may solve equation (12) with respect to o.

When Im(o) 6� 0 the corresponding mode of oscillation is unstable. Figure 1
shows a plot of Re(o/k) with respect to D when M0=0. The four solutions are
obviously real and symmetric with respect to the abscissa. No unstable solution
is possible since there is no forcing on the system.
The four solutions represent waves which travel in the positive and negative

direction of the x-axis. They correspond to the waves present in each of the
uncoupled systems which have speeds 2c0 and 2

����
D
p

k: Solutions b and c go to
0 when the stiffness is zero (no wall separating the ambient and internal ¯ow),
while the waves corresponding to solutions a and d have speeds equal to that of
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the signals in the ¯uid 2c0. For increasing stiffness the solutions gradually shift
role. For example, the solutions that are 0 for D=0 asymptotically approach
the value of 2c0 when the system becomes uncoupled, i.e., for D!1.
Conversely, a and d approach the curves o=k �2

����
D
p

k as D!1.
The partition of the energy of the perturbations between beam and ¯uid

depends on the phase speed o/k, of the wave considered. It is seen from
equation (11) that for a given amplitude ĉ, if the speed of the wave considered is
close to 2

����
D
p

k then Ĥ41 This means that when the speed of a wave in the
coupled system is close to the speed of a wave present, for example, in an
isolated beam, the energy of the perturbation is mainly concentrated in the
beam. Similar arguments can be made for waves whose energy is mainly in the
¯uid.
Figure 2 illustrates the case corresponding to M0=0�5. Now it is found that

there is a range of values of D where Im(o/k) 6� 0 for the solutions b and c. The
existence of this region indicates that unstable motion can be triggered by small
disturbances with a given wave number. Note that Im(o/k) 6� 0 corresponds to
the small region in Figure 2 where the branches b and c collapse into one curve,
i.e., the speed of propagation of the two waves is the same. This is necessarily
the case since the dispersion relation is a fourth order polynomial in o. Note
also that the solutions b and c have asymptotes c0 (0�52 1�0).
Because the unstable modes are associated with the collapsed branches b and

c, it can be concluded that their energy is mostly in the beam. Interestingly, there
is a range of values for the stiffness for which the unstable modes can propagate
only in the positive direction.

2.1. COMPUTATIONAL EXPERIMENT

A simply supported beam of unit length is considered which is in contact with
a ¯uid at rest governed by equations (1) and (2) on one side, and to a constant
ambient pressure equal to that of the unperturbed ¯uid on the other side. A
simply supported beam is used so that there are no near ®elds generated at the

3
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Figure 1. Solutions of the dispersion relation for a quasi one-dimensional coupling. c0 �
�������
1�4p
;

M0=0, k=p and qr=Re(o/k). The branches of the solution are named a, b, c, d from top to
bottom.
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boundaries [3]. The ¯ow takes place between the elastic beam and a rigid wall.
This elastic ``hose'' connects two reservoirs whose pressure is kept constant and
equal to that of the unperturbed ¯ow in the hose. Therefore, the boundary
points are nodal points for the pressure and displacement waves as well. When
the beam is displaced from its equilibrium position it will perform free periodic
oscillations corresponding to a superposition of the modes excited by the initial
condition. There is no dissipative external force acting on the system and the
system is conservative.
The beam equation was solved by means of a semi-discretization based on a

Galerkin projection of the solution on the eigenmodes of an isolated simply
supported beam. This results in the solution of a set of ordinary differential
equations (ODEs) for each mode taken into account. The ODEs are then
integrated in time by means of a standard fourth order Runge±Kutta scheme.
Besides providing high resolution, this approach allows one to control very
closely the modes of the coupled system excited by the initial condition which
drives the system out of equilibrium. The given initial condition is the beam
displacement. In particular, the beam is displaced so that only the ®rst mode of
oscillation has non-null amplitude, i.e., H(x, 0)= h sin px with small h. Thus,
one is able to impose the wave number of the free oscillations in order to
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Figure 2. Solutions of the dispersion relation for a quasi one-dimensional coupling. c0 �
�������
1�4p
;

M0=0�5, k=p: (a), qr=Re(o/k), (b) qr=Im(o/k). The branches of the solution are named a,
b, c, d from top to bottom of Figure 1.
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compare the frequencies resulting from the simulation with that computed by
equation (12). Other modes of oscillation have amplitudes of much lower order
compared to that excited.
The ¯uid equations are discretized by a ®nite-volume scheme where the ¯uxes

at the volume interfaces are computed as in reference [4]. Higher order accuracy
is achieved by means of an ENO algorithm; see reference [5]. The number of
computational volumes used to discretize the ¯ow equations is 1000, so that the
accuracy of the results is of the order of 10ÿ6. The computations were run in
double precision.
In Figure 3 is plotted the Mach number at the inlet of the nozzle versus time.

It is seen that two frequencies of oscillation are present. Because of the set-up of
the experiment, the perturbation is not travelling, but forming a standing wave
in the nozzle (standing waves comprise travelling waves in both directions). The
two frequencies of Figure 1 are the ones found in this experiment. In particular
it was veri®ed that the periods T=2o/p computed by equation (12) with
D=0�001 (1�61, 21�1) are to a good approximation equal to those obtained with
the numerical simulation (1�64, 21�7).

3. TWO-DIMENSIONAL COUPLING

Let us consider a two-dimensional case in which the equation governing the
¯ow is the linear potential equation

�1ÿM2
0�Fxx � Fyy ÿ 1

c20
�2U0Fxt � Ftt� � 0, �13�

where (Fx , Fy)= (u, v) are the components of the ¯ow velocity vector, (U0 , 0)
and c0 are, respectively, the velocity and speed of sound of the unperturbed ¯ow,
and M0=U0/c0.
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Figure 3. Mach number versus time at nozzle inlet: D=0�001 and k=p.
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Consider an in®nitely long ¯exible surface separating two regions of the ¯ow.
On this surface the boundary condition on the ¯ow is given by the equation

Fy � Ht �U0Hx, �14�
where H is the distance of the ¯exible surface to the x-axis. In addition the
potential F is required to vanish in the far ®eld.
In the idealized system studied, it is assumed that the in®nite surface is elastic

and satis®es the linear small perturbation, beam equation

Htt �DHxxxx � �p� � 2r0�Ft �U0Fx�, �15�
where r0 is the ¯uid density of the unperturbed ¯ow and [p] is the pressure jump
across the wall. For simplicity, it is assumed that the ¯exible surface is wetted by
the ¯uid on both sides. The case corresponding to a ¯ow at rest on one side
leads to more complex algebraic manipulations, but the conclusions would not
be altered.
Equations (13)±(15) form a coupled system. The coupling comes about

through the aerodynamic load on the moving surface (beam) and the boundary
condition, equation (14).
Our study is limited to such a linear model since we are interested in studying

how the coupling affects the propagation of small amplitude waves. To do that,
take

F � F̂ exp�i�k1x� k2yÿ ot��, H � Ĥ exp�i�k1xÿ ot��, �16; 17�
and substitute these expressions into equations (13)±(15). The angular velocity o
is supposed to be a real number. Therefore, waves whose amplitude are not
diverging or decaying in time are considered.
Solving for k2 in equation (13) one obtains

k2 �
���������������������������������������
o
c0
ÿM0k1

� �2

ÿk21

s
: �18�

Note that to have a ®nite amplitude wave for large y and to ensure the radiation
condition, i.e., outgoing waves in the far ®eld, k2 is either a positive imaginary or
a positive real:

k2 2 iR� or k2 2 R�: �19�
These conditions are a very important discriminant for admitting or not certain
solutions and use will be made of them later.
From equation (14) one has

F̂ � ÿoÿU0k1
k2

Ĥ �20�

and from equation (15) one obtains

�Dk41 ÿ o2�Ĥ � ÿ2r0i�oÿU0k1�F̂: �21�
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Substituting equations (18) and (20) into equation (15), and making use of
equations (16) and (17) one obtains the dispersion relation for the coupled
aeroelastic system.
The dispersion relation is non-dimensionalized with respect to K0=(o2/D)1/4,

which is the wave number of the small perturbations travelling in the beam when
there is no coupling with the ¯uid. Introducing also k0=o/c0 , m= k0/K0 ,
K= k1/K0 and �=2r0/K0, the dispersion relation is written as

K4 ÿ 1 � i�������������������������������������
�mÿM0K�2 ÿ K2

q : �22�

The parameter m has a physical meaning similar to that of the Mach number: it
is the ratio between the speed of the perturbations in the beam to that in air
when there is no coupling.
This equation relates the wave numbers and the frequencies of the small

amplitude waves which can propagate in the coupled aeroelastic system. In the
case of M0=0 the above equation reduces to

K4 ÿ 1 � �����������������
K2 ÿ m2

p , �23�

which is identical to the dispersion relation obtained in reference [3, equation
3.9], for a case with zero mean ¯ow. Notice that

k2=K0 �
������������������������������������
�mÿM0K�2 ÿ K2

q
;

which is the denominator of the right-hand side of equation (22).
Let us consider now the uncoupled system, where the beam vibration is not

affecting the perturbations in the ¯uid and vice versa. In this case, the non-
dimensional dispersion relation is

K4
b ÿ 1 � 0, �24�

with solutions

Kb �21, 2i: �25�
The solutions Kb=21 correspond to wave motion in the positive and negative
directions of the x-axis. The solutions Kb=2i represent near ®elds generated
close to some boundary, these are used to accommodate the boundary
conditions if present.
In the ¯uid, the acoustic waves propagating in the x direction have speed

of/kf=U02 c0, from which one can compute the dimensionless wave number

Kf � m
M021

: �26�

If it is assumed that the solutions of the coupled system are not very far from
those of the uncoupled system equations (25) and (26), one can make
equation (22) approximately solvable in closed form. Consider ®rst the roots
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K1 21 and the case jm2M0j< 1; after substituting into the right-hand side
of equation (22) one has

K 4 ÿ 1 � �����������������������������
1ÿ �m3M0�2

q , �27�

where the conditions (19) were taken into account. To the same order of
approximation the solution of the above equation can be written

K � 1� �

4

����������������������������
1ÿ �m3M0�2

q , �28�

Similarly for jm2M0j> 1, one has

K � 1� i�

4

����������������������������
�m3M0�2 ÿ 1

q �29�

These waves are equivalent to the waves that in an isolated beam travel from
ÿ1 to +1 without attenuation. In the coupled case, depending on m2M0

one has two different behaviors. For jm2M0j< 1, the wave number in the
direction of the x-axis is real, while k2/K02 iR+, i.e., the wave is decaying in
the direction of the y-axis, and therefore, since there is no energy radiated
away, it propagates without attenuation in the direction of the x-axis.
When jm2M0j> 1, K has a non-zero imaginary part. The wave number in the

direction of the y-axis is real, i.e., energy is radiated away from the vibrating
beam and therefore the wave is decaying as it propagates along the beam.
The equivalent of the near ®elds existing in the uncoupled beam are found

when K1 2i :

K �2i 1� i�

4

������������������������������
�m3M0i�2 � 1

q
0B@

1CA, �30�

which is valid for any value of m2M0 , therefore the type of solution found for
the coupled aeroelastic system is basically the same as for the near ®elds
corresponding to M0=0.
The solutions corresponding to the acoustic waves are found rewriting

equation (22) as ������������������������������������
�mÿM0K�2 ÿ K2

q
� i�

K4 ÿ 1
, �31�

then assuming K1m/(M0 2 1), one has������������������������������������������������
mÿM0

m
M021

� �2

ÿK2

s
� i�

�m=M021�4 ÿ 1
: �32�

The above equation has acceptable solutions, in the sense of the conditions (19),
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if and only if jm/(M02 1)j> 1, which is equivalent to jm2M0j> 1. In this case
the solutions are

K � m
M021

� �

2
m

M021

� �4
ÿ1

� � M021

m��1ÿM2
0� �M0m� , �33�

which are real numbers and therefore the waves travel without attenuation. The
correspondent wave number in the direction of the y-axis is purely imaginary, so
there is no radiation of energy to in®nity. These waves are the equivalent to the
acoustic waves in the ¯uid for the uncoupled system.
It should be noted that there are as many different kinds of waves as there are

different systems interacting, and that the particular wave with its velocity near
that of one of the component systems will entrust its energy chie¯y to that
component. This can be seen by substituting the solutions of the dispersion
relations into equation (20), or equation (21), and solving for the ratio of the
amplitudes.
Compared to the case in which M0=0, there is a richer variety of solutions

available, according to the inequality satis®ed by m2M0. In fact depending on
the direction considered, one may have either m+M0> 1 or ÿm+M0< 1. In
this case for example, the last pair of solutions obtained would propagate only in
the positive direction of the x-axis.
This result is reasonable if one considers that what is important is the relative

motion of the ¯uid with respect to the waves travelling in the beam, in this sense,
it is interesting to compare the results in reference [3] where a similar analysis
was done for M0=0. In this case it is known that waves propagating in the
beam in the x direction radiate energy in the y direction only if the wave is
supersonic, i.e., jmj> 1. When M0 6� 0, a frame of reference at rest is taken with
respect to the ¯uid. In the relative motion, the speed of the wave in the beam is
m2M0.
Why are these results relevant to the noise emission from a rib stiffener?

Intuitively it is clear that when the wave energy is mostly into the ¯uid, very
little energy is scattered at the stiffener, while if the wave energy is mostly
concentrated in the beam, the noise emission will be higher. This argument can
be made rigorous if one considers that the eigenvalues of the free aeroelastic
system become the poles of the transfer function for the forced system
constituted by the ¯uid, the beam and the stiffener. The number and the position
of these poles in the complex plane are now functions not only of m but of M0 as
well. Therefore, the emission of noise as a function of m, as for example
presented in reference [2], now depends on the free stream Mach number.
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